

Enhancing Profit and the Environment

Laurence Shalloo

Animal & Grassland Research and Innovation Centre

Teagasc,

Moorepark,

Fermoy,

Co Cork.

Phone: 025 42 222

web: http://www.agresearch.teagasc.ie/moorepark/

Email: moorepark_dairy@teagasc.ie

Moorepark2021

Grass fed – Protein efficiency

Total Efficiency

Proteins produced (whole carcasses, milk)

Proteins consumed by livestock (total feed)

Net Efficiency

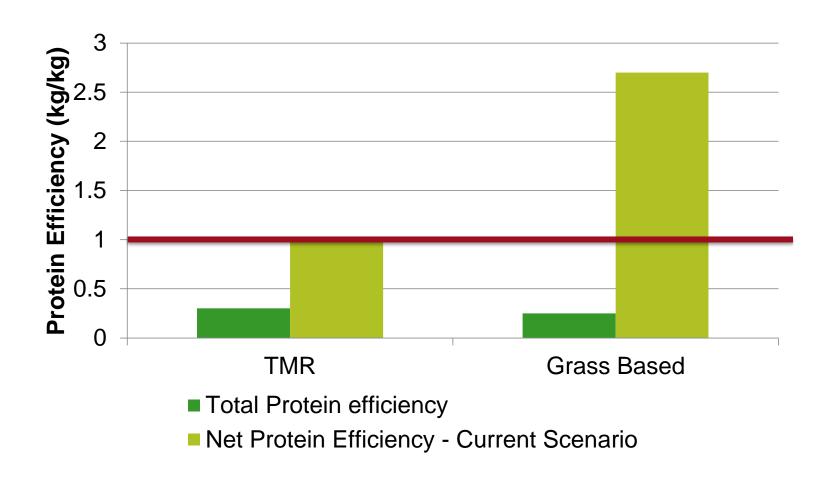
(adapted from Wilkinson, 2011; Ertl et al, 2015) Human edible proteins produced

Human edible proteins consumed

Net efficiency

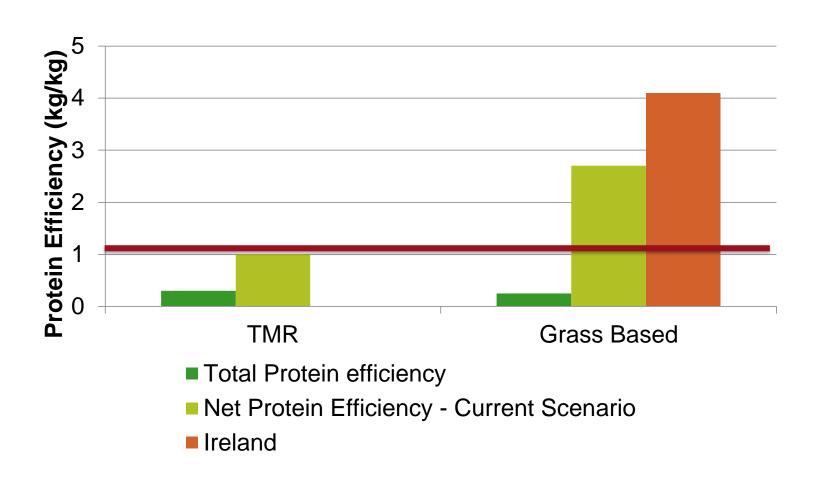
Net producer

Net


0 consumer

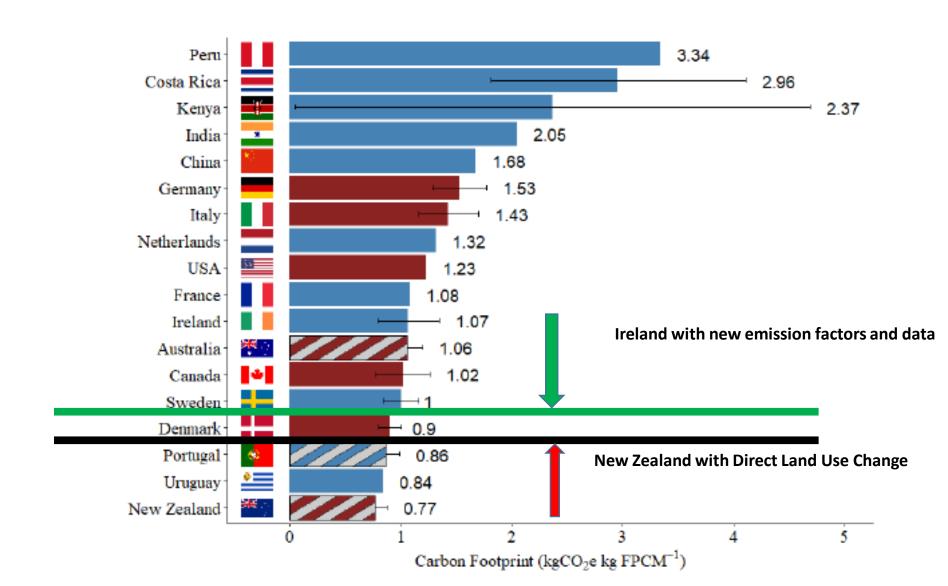
→ What is human-edible ?

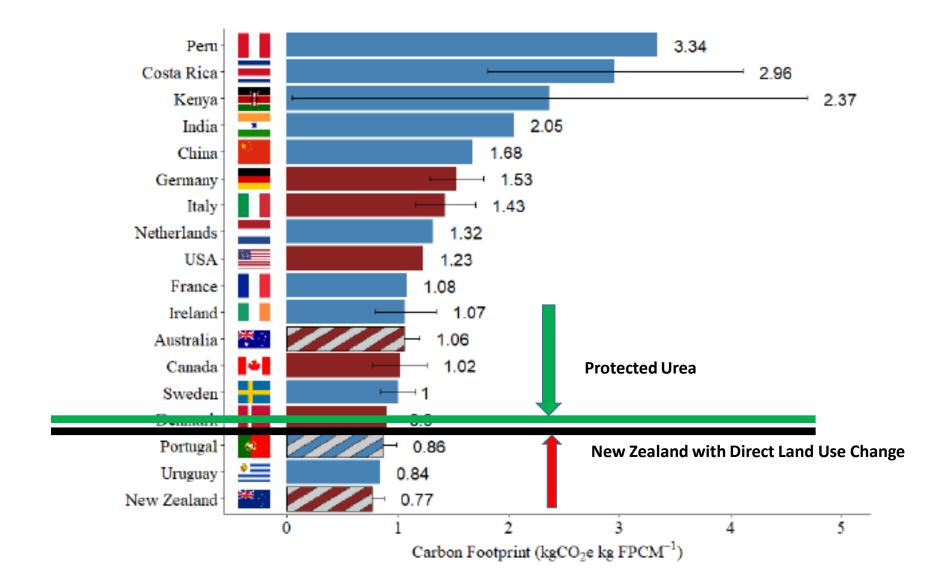
Laisse et al., 2018

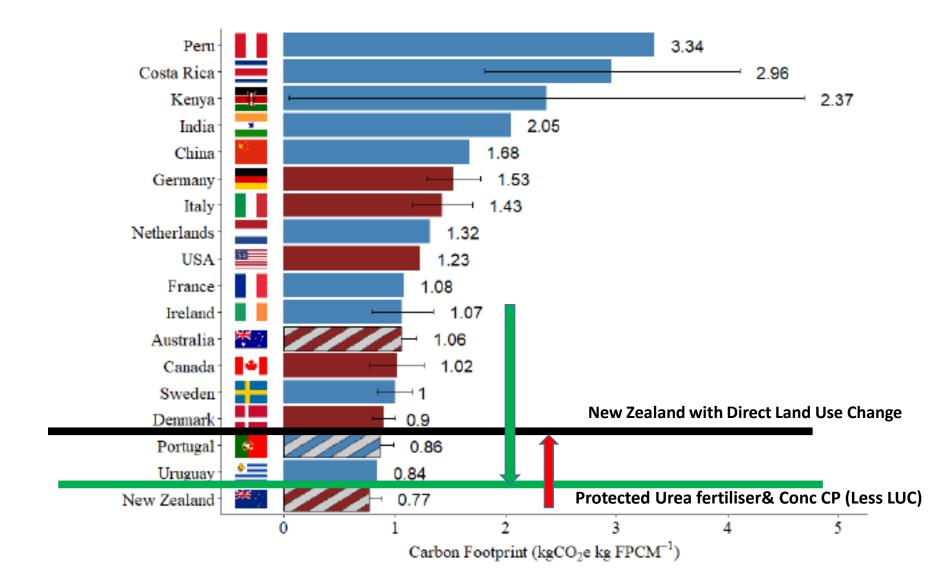

Grass fed – Protein efficiency

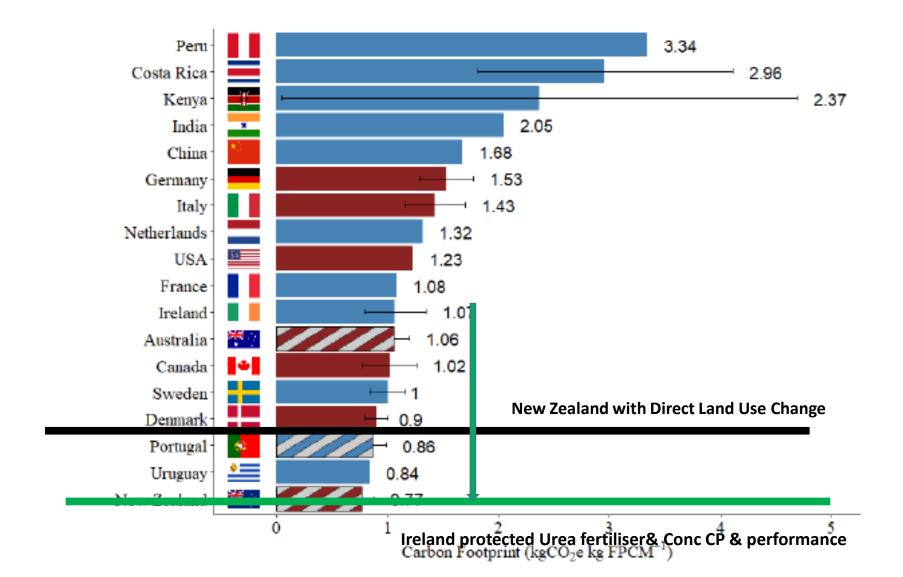
Grass fed – Protein efficiency

The System


	Current	Target
Grass Utilised kgDM/Ha	7.8	12.9
SR LU/Ha	2.10	2.7
EBI (Similar to BW)	90	150
Milk Solids kg/cow	417	480
Six week calving Rate %	62	90
Labour (hours per cow)	40 (60 cows)	16 (150 cows)




System - Outcomes


	Current	Target
GHG emissions intensity kg CO2e/kgFPCM (excl seq)	0.99	0.76
Nitrogen / Phosphorous use efficiency (%)	25/62	35/85
Biodiversity cover (% habitat area)	7	>10
Net Margin per Hectare (Includes interest, Depreciation & labour)	519	2,452
Net Margin per kg MS	0.58	1.84

Soil and Carbon

Available online at www.sciencedirect.com

GEODERMA

Geoderma 122 (2004) 1-23

www.elsevier.com/locate/geoderma

Review article

Carbon sequestration in the agricultural soils of Europe

Annette Freibauer^{a,*}, Mark D.A. Rounsevell^b, Pete Smith^c, Jan Verhagen^d

^a Max-Planck-Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany
^b Department of Geography, Université catholique de Louvain, Place Pasteur, 3, B-1348 Louvain-la-Neuve, Belgium
^c Department of Plant and Soil Science, University of Aberdeen, Cruikshank Building, Aberdeen, AB24 3UU, UK
^d Plant Research International, Business Unit Agrosystems Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands

Available online 27 February 2004

TIGHTS USE CUZ

Biogeosciences, 13, 4975–4984, 2016 www.biogeosciences.net/13/4975/2016/ doi:10.5194/bg-13-4975-2016 ⊕ Author(s) 2016. CC Attribution 3.0 License.

@ O

Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?

Dario A. Fornara¹, Elizabeth-Anne Wasson¹, Peter Christie², and Catherine J. Watson¹Agri-Food & Biosciences Institute (AFBI), Newforge Lane, Belfast, BT9 5PX, UK
²Institute of Soil Science, Chine se Academy of Sciences, Nanjing 210008, China

Correspondence 10: Dario A. Fornara (dario.fornara@afbini.gov.uk)

Receivect 24 May 2016 – Published in Biogeosciences Discuss.: 3 June 2016 Revised: 6 August 2016 – Accepted: 29 August 2016 – Published: 9 September 2016

Agriculture, Ecosystems and Environment 121 (2007) 121-134

Agriculture Ecosystems & Environment

www.elsevier.com/locate/agee

Full accounting of the greenhouse gas (CO₂, N₂O, CH₄) budget of nine European grassland sites

J.F. Soussana ^{a,1,*}, V. Allard ^{a,1}, K. Pilegaard ^b, P. Ambus ^b, C. Amman ^c, C. Campbell ^d, E. Ceschia ^{a,2}, J. Clifton-Brown ^{e,3}, S. Czobel ^f, R. Domingues ^g, C. Flechard ^c, J. Fuhrer ^c, A. Hensen ^h, L. Horvath ^j, M. Jones ^e, G. Kasper ^g, C. Martin ⁱ, Z. Nagy ^f, A. Neftel ^c, A. Raschi ^k, S. Baronti ^k, R.M. Rees ¹, U. Skiba ^d, P. Stefani ^m, G. Manca ^j, M. Sutton ^d, Z. Tuba ^f, R. Valentini ^m

Animal (2010), 4:3, pp 334–350 © The Animal Consortium 2009 doi:10.1017/S1751731109990784

Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands

J. F. Soussana^{1†}, T. Tallec¹ and V. Blanfort^{1,2}

¹INRA UR0874, UREP Grassland Ecosystem Researdi, 234, Avenue du Brézet, Clermont-Ferrand, F-63100, France; ²CIRAD UR 8, Livestock Systems, Campus International de Baillarquet, Cedex 5, Montpellier, F-34398, France

(Received 6 January 2009; Accepted 12 June 2009; First published online 22 September 2009)

June 20th 2018 FGF 2018 Cork Ireland

Katja Klumpp & Dario Fornara

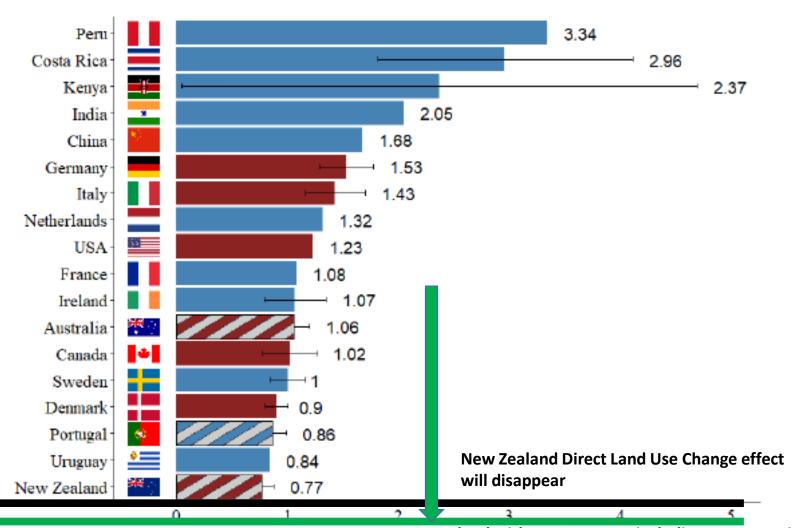
INRA, Grassland Ecosystem Research Unite, Clermont Ferrand, France Agri-Food and Biosciences Institute. Belfast. Northern Ireland. UK

Available online at www.sciencedirect.com

ScienceDirect

Agriculture, Ecosystems and Environment 121 (2007) 357-364

Agriculture Ecosystems & Environment


www.elsevier.com/locate/agee

Carbon sequestration determined using farm scale carbon balance and eddy covariance

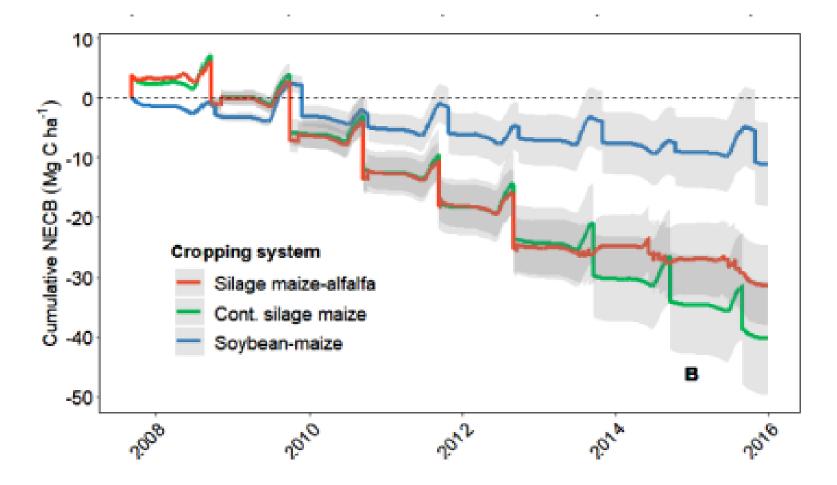
Kenneth A. Byrne *, Ger Kiely, Paul Leahy

Centre for Hydrology, Micrometeorology and Climate Change, Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland

Received 14 June 2006; received in revised form 20 October 2006; accepted 20 November 2006 Available online 2 January 2007

Contents lists available at ScienceDirect

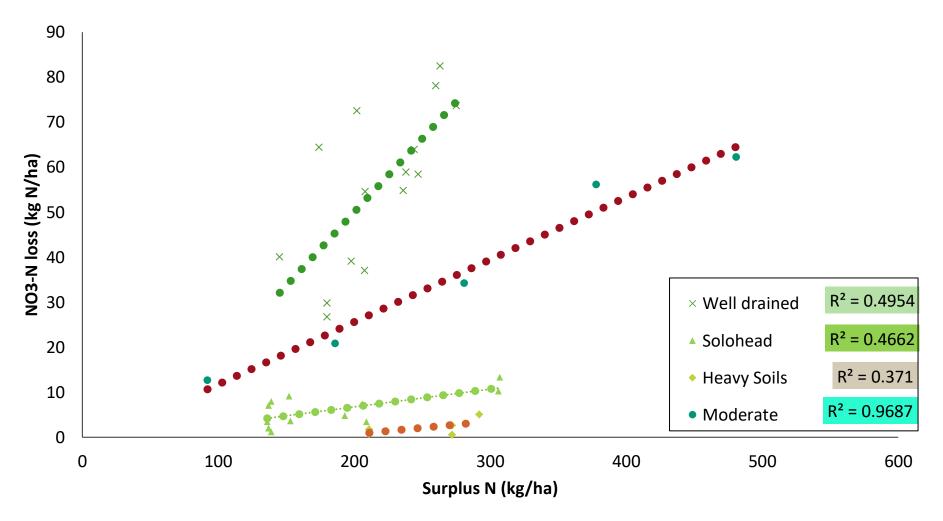
Agricultural and Forest Meteorology



Long-term ecosystem carbon losses from silage maize-based forage cropping systems

Joshua D. Gamble a,*, Gary W. Feyereisen b, Timothy J. Griffis c, Chris D. Wente d, John M. Baker b

- * Plant Science Research Unit, USDA-ARS, Saint Paul, MN, USA
- Plant Science Research Unit, USDA-ARS, Saint Paul, MN, USA
 Soil and Water Management Research Unit, USDA-ARS, Saint Paul, MN, USA
 Department of Soil, Water and Climate, University of Minnesota, Saint Paul, MN, USA
 North Central Soil Conservation Research Laboratory, USDA-ARS, Morris, MN, USA



Methane

- Baseline Very Little research at pasture
 - Poor understanding of the factors effecting methane in grass based systems
 - Grass quality, etc
- Inventories
 - Methane calculated based on energy intake
 - Methane reduction targets
 - Require a refocus on pasture
- Short Lived Gas
 - Oxidised within a 20 year cycle
 - Target Stable/slightly declining
 - No additional warming effect

N Surplus and N Loss

Summary

- System is paramount to ensure sustainability
 - Grass based
 - Appropriate Stocking rate
 - Minimise supplementary and surplus nitrogen
 - Methane reduction targets Harder to justify supplementary feed
- Win/Win scenarios reduce footprint and absolute emissions while increasing profitability
 - Research challenge
- Policy makers make policy How the Industry responds is key to success?
- Climate neutrality
 - Stable/declining methane
 - N emissions reduced
 - Residual captured and stored

