

Solutions to Environmental Challenges

Professors Grant Edwards & Keith Cameron Lincoln University

The nitrogen cycle

GROWING

DAIRY'S FUTURE

Proposed solutions

GROWING

DAIRY'S FUTURE

OASTURA

Plantain (cv Tonic) reduces urine N concentration

< 50% Pln

Control

>50% Pln

Bryant et al. 2017

GROWING

FUTURE

Urine N loading is lower from cows grazing plantain

	Ryegrass- white clover	50% Plantain	100% Plantain
Autumn			
Urine N (g N/L)*	5.4	3.6	2.4
Urine volume (L/cow/day)	46	59	74
Urine patch load (kg N/ha)	698	579	450
Spring			
Urine N (g N/L)*	4.7	3.4	2.2
Urine volume (L/cow/day)	44	34	54
Urine patch load (kg N/ha)	666	503	321

Reduced leaching from Italian ryegrass/plantain/white clover partly due to better plant N uptake, lower urinary N load from animals, and...

The reduction was much stronger when urine was used from cows grazing the Italian/plantain/white clover mixture.

GROWING

FUTURE

..reduction in nitrification in the soil from plantain-based pasture

Urine for both treatments was collected from cows grazing PR/WC pasture. Thus the reduced leaching loss was attributed to the release of a biological nitrification inhibitor from plantain into the soil (this is supported by soil molecular biology analysis).

Carlton et al. (2018)

Farm Systems Trial

Ashley Dene Research and Development Station

Farmlets/treatments	Plantain 150N Ryegrass 150N		
Stocking rate (cows/ha)	3.5 (80 cows) 3.5 (80 cows)		
N fertilization (kg/ha/y)	150 150		
Forage type	50% Mix (RG+PL+WC)Ryegrass/W50% Pure Plantain		
Measurements and monitoring	Pasture and milk production Milk composition N cycle (inputs and losses) N leaching 'Scalar' Decision rules		
Milk production kg MS/cow	475	472	
kg MS/ha	1,663	1,652	

Can lower input systems reduce the N loss and still be profitable? (Chapman *et al.* 2017)

GROWING

DAIRY'S FUTURE

Chapman <i>et al.</i> (2013) SIDE proceedings	Low Stocking Efficient	High Stocking Efficient
Milking platform		
Stocking rate (cows/ha)	3.5	5.0
N fertiliser application (kg N/ha/year)	150	400
Total pasture harvested (t DM/ha/year)	16.0	18.1
Grain supplement (kg/cow/year)	100	800
MS produced (kg/cow/year)	453	437
MS produced (kg/ha/year)	1,588	2,184
Operating profit (\$/ha)	4,334	4,810
Farm gate N surplus (kg/ha)	154	339
N leached (kg N/ha) (calculated with OVERSEER)	24	38
Wintering support land		
Main winter crop	Kale	Fodder beet
Crop area (ha / 100 cows)	8.0	2.2
Other winter feed	Cereal silage	Pasture silage

P21/MBIE funded research "Next Generation Dairy Systems" (Fonterra, DairyNZ, DCANZ, Beef & Lamb NZ, MBIE) led by Dr Mark Shepherd of AgResearch with Dr David Chapman of DairyNZ as Science Leader in Canterbury

Lincoln University Dairy Farm (LUDF) (Pellow 2017)

GROWING

New System

2014 - 18• 3.5 cows /ha

- 143 kg N fertiliser/ha
- < 300 kg DM/cow imported supplement

2012 -13

- 3.9 cows/ha
- 350 kg N fertiliser/ha
- 430 kg DM/cow imported supplement

versus

LUDF reduced nitrogen loss to water

GROWING

FUTURE

Latest data from Ron Pellow

LUDF milk production

	2012/13	2014/15	2015/16	2016/17
Stocking Rate (cows/ha)	3.9	3.5	3.5	3.5
kg milksolids/cow	477	498	522	516
Kg milksolids/ha	1878	1725	1812	1789

Data from Ron Pellow

Total land use by farm segment – relative to historical LUDF

GROWING DAIRY'S FUTURE

Nitrification inhibitors slow down the production of nitrate and reduce N leaching losses

GROWING DAIRY'S FUTURE

DCD reduced nitrate-N leaching losses in a range of soils and climatic conditions (Di *et al.* 2009)

GROWING

FUTURE

Treatments

DCD reduced nitrous oxide emissions in a range of soils and climatic conditions (Di *et al.,* 2009)

Regions and soil	Rainfall	EF3 (%) Urine	EF3 (%) Urine + DCD	% reduction
Canterbury, Lismore	1100 mm	3.0	1.4	53.3
Southland, Mataura	1100 mm	2.0	0.9	55.0
West Coast, Harihari	1100 mm	1.9	0.8	58.0
Canterbury, Lismore	2200 mm	3.9	1.0	74.0
Southland, Mataura	2200 mm	1.5	1.0	33.3
West Coast, Harihari	2200 mm	1.4	0.4	71.4
Average		2.3	0.9	64.0

'Catch crop' of oats can reduce nitrate losses from winter forage crops

Recent work by Carey *et al.* (2016) has shown 30% reductions in nitrate leaching losses are possible. GROWING

FUTURF

Work funded by P21 investors (DairyNZ, Fonterra, Beef & LambNZ, DCANZ and MBIE)

https://www.dairynz.co.nz/media/3360233/sequence_cropping_kale_and_oats.pdf

GROWING

DAIRY'S FUTURE

Dairy_{NZ} 💈

OASTURE

SUMMI

http://www.dairynz.co.nz/media/3360233/sequence_cropping_kale_and_oats.pdf

Reducing nitrate leaching using stand off pads

Cows removed from paddock for 16 - 18 hours reduces N loading on bare soil

> ANGULAR GRADED AP40

APPROVED SITE SOURCED GRANULAR MATERIAL

110mm Ø NEXUSFLOW

(PUNCHED), DETAIL A

SUBSOIL PIPE

RIDGELINE

STAR BOOD TAL

BIDIM A24 FILTER FABRIC OR SIMILAR OVER AND UNDER HDPE LINER

COW CARPET TO BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS

APPROVED

AGGREGATE

DRAINAGE

GROWING

FUTURE

Benefits of **ClearTech**

- Reduced water use on farm by recycling water
- Reduced risk of microorganism (*E. coli*) pollution
- Reduced risk of Phosphorus pollution
- Reduced risk of Nitrogen pollution

GROWIN

-IITIR