Where is farming & research at when it comes to environment and where does it need to go?

Pat Dillon Head of the Animal & Grassland Research and Innovation Programme Teagasc, Moorepark

Irish Government Policy Perspective

- Climate Action Plan 2019- targeted a 10 to 15% reduction in Greenhouse Gas Emissions by 2030.
- New Programme for Government Agreed in 2020
 - 51% reduction in GHG by 2030 & Climate Neutral Economy by 2050
- Climate Action Bill Currently Going Through Oireachtas.
- By December 2021- Climate Action Council Develops Carbon Budgets; Government Agreement on Carbon Budgets; Sectoral Ceilings Assigned- 2021 to 2025 & 2026 to 2030.

Ag Climatise- A Roadmap Towards Climate Neutrality

Ag Climatise

A Roadmap towards Climate Neutrality

(stabilising methane and reducing nitrous emissions)

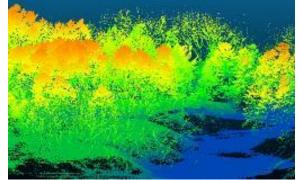
- Vision: a climate neutral food system by 2050
 - Reduce GHG emissions from the sector.
 - Increase carbon sequestration and carbon storage of Irelands land use sector.
 - Reduce nutrient loss to the environment and contribute to improved water quality and biodiversity.
 - Meet our Ammonia emissions targets.
 - Build sustainable, resilient food production and land use systems.
 - Transparently communicate our progress.
 Reduce chemical N fertilisation from a peak of 408,000 tonnes in 2018 to 350,000 tonnes by 2025 and 325,000 tonnes by 2030.

Teagasc Dairy Roadmap to 2027

	Current	2027	Current Research Performance
Milk Solids (kg fat plus protein/cow)	417	465	480
Herd EBI (€)	90	140	150
Six-weeks Calving Rate (%)	62	78	90
Av Number of Lactations/Cow	3.4	>4.0	>4.5
Stocking Rate (cows/ha)	2.10	2.20	2.70
Herbage Utilized (tonnes/ha)	7.8	8.9	12.9
Concentrate Fed/Cow (kg)	1,176	750	500
Fertilizer N Usage (kg/ha)	184	170	150
GHG Emissions (kg CO₂e/kg FPCM)	0.99	0.85	0.76
Biodiversity (habitat area as %)	7	10	10
Nitrogen Use Efficiency (%)	25	26	35

The Teagasc Signpost Programme

- A national campaign to reducing GHG emissions
- Three main elements:
 - 1. Network of 100 Signpost demo farms
 - 2. Signpost Advisory campaign
 - 3. National Agricultural Soil Carbon Observatory (NASCO)
- Two guiding principles
 - whole of industry alignment
 - build on existing initiatives, while avoiding duplication


KPI of the Dairy Signpost Farms

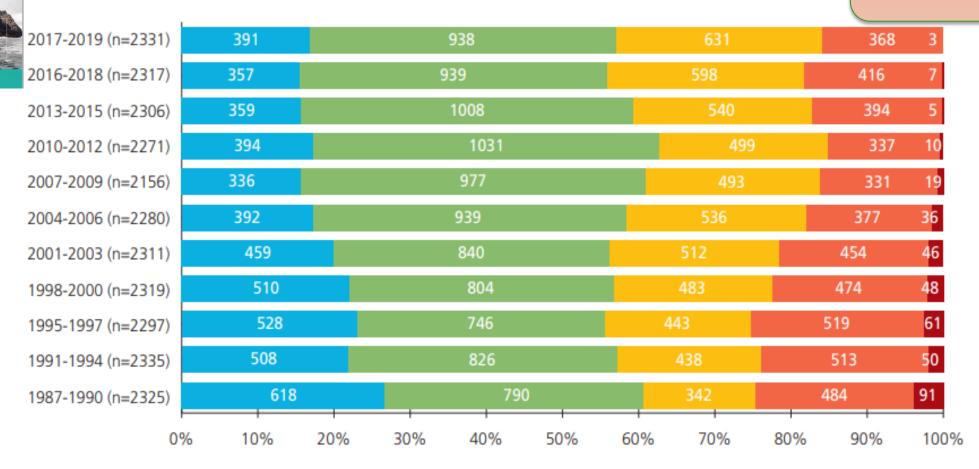
- Reduce GHG emissions to 0.7 kg CO₂eq per kg of FPCM.
- Increase pasture utilisation by 2 t DM/ha over 5-years.
- Reduce the use of chemical N by 10% over 5-years.
- Use 50% of chemical N as protected urea & all slurry spread using LESS.
- Target 4.5 lactations herd average & increase EBI by €10/year.
- Reduce concentrate CP% to 14% (main grazing season)
- Target 10% of high value biodiverse area per farm.

National Agricultural Soil Carbon Observatory

- All Signpost farms will be part of the NASCO
- Deep soil sampling (1m) soil C
- LiDAR analysis above ground C stocks
- Model soil C sequestration across all sites
 - will include farm specific data plus data from C Flux towers
- Objective:
 - Establish soil carbon stock across all farms
 - Quantify change over time related to:
 - » Soil type
 - » Land use
 - » Management practices- soil fertility/grazing management/fertilizer practices

Current Research on GHG Emissions

- Methane
 - Baseline and profile- from pasture based systems
 - Additives- feed additives, dietary oils, seaweeds
 - Genetics- animal lifetime efficiency
- Soil carbon sequestration- baseline and management
- Fertiliser- soil pH, fertiliser type, white clover
- Modelling- inventory
 - Life Cycle Assessment
 - Sequestration and interaction with grass growth and management
- Land use change- rewetting peat soils;



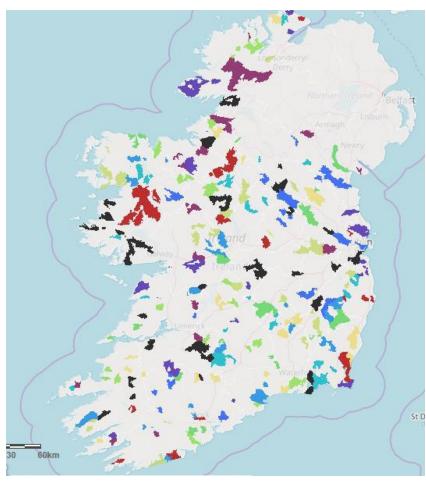
8

WATER QUALITY IN 2019 An Indicators Report

Irish Water Quality

Some Dis-improvement 2016-2019

Percentage and number of water bodies


High Good Moderate Poor Bad

EPA, Water Quality in 2019

Use Agricultural Sustainability Support and Advisory Programme (ASSAP) To Improve Water Quality

190 Catchments "Areas for Actions" 2018 to 2021

Why we need ASSAP

- Water quality has remained static
- Agriculture is the most prevalent pressure
- Support needed as well as regulation.

<u>Teagasc</u>

- Team of 20 ASSAP advisors
- Across the country Teagasc offices
- To help farmers address water quality in "Areas for Action" (see map)
- Free Advisory service
- Available to clients and non-clients in conjunction with private consultants

Dairy Co-Ops

 Team of 10 additional staff to address sustainability issues with Co-Op Members

What will ASSAP do

- Work with Farmers to reduce impact of farming in 'Areas for action'
 - Improving nutrient management
 - Controlling losses from farmyards
 - Managing land to avoid losses
- Support all farmers to improve water quality
 - Know the water quality in your area
 Farm to protect "your water"

Climate Action Options

- 1. Adopting existing technologies and best practices- MACC
- 2. Target interventions and prospective technologies- white clover, feed additives, low carbon/nitrogen feeds, selecting low emitting animals.
- 3. Promoting a circular bio economy- utilising wastes efficiently; greater integration between dairy and beef industries.
- 4. Carbon removal- carbon sequestration pasture management, hedges, woodland, land use change.
- 5. Renewable energy- generating renewable energy on farms- solar, wind, biogas.
- 6. In the Irish context there is a requirement to differentiate biogenic methane from other greenhouse gases like New Zealand.

Conclusions

- Dairy production systems in New Zealand & Ireland are mainly grass-based, which confers environmental advantages in terms of manure cycling, soil OM content, feed self-sufficiency (including protein), amount of human edible food in diet, GHG emissions per kg of product, landscape diversity and superior product quality;
- Environmental policy and targets relating to GHG, water quality and biodiversity will require widespread adoption of new technologies and changes in emphasis of production systems;
- Research is needed to identify new mitigation technologies and changes in farming practices that can allow environmental targets to be reached without compromising food production.

